Maximize Thermal Performance with Lightweight Precast Concrete Modular Cladding

Explore how lab-tested R-values deliver high-performance envelopes
Differentiate between a prescriptive and lab-tested R-value and explain why lightweight precast concrete modular cladding provides heightened thermal performance over traditional built-up building envelopes.
Lightweight Precast Concrete Cladding System

This modularized building envelope solution contains:

- Insulation
- Vapor barriers
- Integral water repellent
- Heavy-gauge steel frame
- Stainless steel fasteners
- Lightweight, 2-in thick precast concrete panel
- Windows, available
Insulation & Vapor Barrier

- Factory-applied polyurethane closed-cell foam insulation is sprayed into the thermal break and stud cavity.
- Minimum depth 1 ½-inches.
- Provides the vapor barrier too.
Heavy-Gauge Steel Frame and Fasteners

• The lightweight 2-inch thick precast concrete panel is fixed to a heavy-gauge steel frame with stainless-steel fasteners.
Cladding

- 2-inches of architectural precast cladding
- Maintains ability to introduce reveals, projections, and true brick finishes
- The cladding system is easily installed upon the building frame.
- Can be used to re-clad existing buildings using the as-built foundation and superstructure
STANDARD 6" 16-GAUGE OR 4" 14-GAUGE GALVANIZED STUD FRAME 2'-0" ON CTR

INTERIOR FINISH AND SHIMMING AS REQUIRED BY OTHERS

CLOSED-CELL SPRAY FOAM INSULATION BY MANUFACTURER.

1½" THERMAL-BREAK

(4" - 6")

(+¾" - 2¼")

6" THERMAL-BREAK

REFRACTORY ANCHOR

THERMAGUARD™ INSULATED STAINLESS STEEL CONNECTION ANCHORS ON NON-GRAVITY STUDS AND REFRACTORY ANCHORS ON GRAVITY STUDS.

CONCRETE

6X6 HOT-DIPPED GALVANIZED WELDED WIRE MESH REINFORCING

3/4" JOINT

SINGLE SEALANT LINE (DOUBLE SEALANT OPTION AVAILABLE)
The Air Gap in Architectural Precast Concrete Cladding

• The way that the exterior concrete face attaches to the frame creates a thermal air gap that is filled with factory-applied, closed-cell foam insulation.
• Provides a thermal break to allow for a layer of continuous insulation.
• Size of available air gap ranges from ½-inch to 2 ½ inches
• The air gap reduces thermal transfer across the assembly by as much as 25 percent, when compared to a traditional architectural precast system.
<table>
<thead>
<tr>
<th>Traditional Built-Up</th>
<th>Lightweight Precast Concrete Modular Cladding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Onsite Construction</td>
<td>Factory Assembled</td>
</tr>
<tr>
<td>Each layer added upon the other</td>
<td>Factory-Controlled Quality</td>
</tr>
<tr>
<td>Frame</td>
<td>Integrated Design Process—early coordination of design aesthetic, performance, and scheduling goals</td>
</tr>
<tr>
<td>Vapor/air barriers</td>
<td></td>
</tr>
<tr>
<td>Insulation</td>
<td></td>
</tr>
<tr>
<td>Facade</td>
<td></td>
</tr>
<tr>
<td>Multiple interior crews create the envelope</td>
<td></td>
</tr>
<tr>
<td>Improper installation of components often occurs</td>
<td></td>
</tr>
<tr>
<td>Thermal performance is impacted by insulation gaps and quality issues related to the limitations of on-site installation</td>
<td>Higher Energy Performance</td>
</tr>
</tbody>
</table>
Thermal Performance Metric: R-Value

• R-value is a measure of how well insulation, or an assembly, resists the flow of thermal energy.
• Higher R-values indicate better insulators.
• Lower R-values indicate poorer insulators.
<table>
<thead>
<tr>
<th>Prescriptive R-Value</th>
<th>Lab-Tested R-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Determined by calculations used to arrive at the expected thermal performance of the solution</td>
<td>• Determined by the assembly being tested to attain accurate data on the heat transfer that occurs through the insulated structure in representative test conditions.</td>
</tr>
</tbody>
</table>
Importance of Testing R-Values

• Example 1: Panel Configuration
 • ½-inch air gap
 • 4 inches foam
 • Prescriptive R-Value: 24.8
 • Lab Tested Value: 12.2

• Example 2: Panel Configuration
 • 2-inch air gap
 • 5.5 inches foam
 • Prescriptive R-Value: 38.5
 • Lab Tested R-Value: 24
Energy Codes

Use R-Values to Define Requisite Thermal Performance

<table>
<thead>
<tr>
<th>IE</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4 EXCEPT MARINE</th>
<th>5 AND MARINE 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All other</td>
<td>Group R</td>
<td>All other</td>
<td>Group R</td>
<td>All other</td>
</tr>
<tr>
<td>-----------------</td>
<td>-------------</td>
<td>-------------</td>
<td>-------------</td>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Roofs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y R-38</td>
<td>R-38</td>
<td>R-38</td>
<td>R-38</td>
<td>R-38</td>
<td>R-38</td>
</tr>
</tbody>
</table>

Walls, above grade									
R-5.7ci	R-5.7ci	R-5.7ci	R-7.6ci	R-7.6ci	R-9.5ci	R-9.5ci	R-11.4ci	R-11.4ci	R-13.3ci
R-13 + R-6.5ci	R-13 + R-6.5ci	R-13 + R-6.5ci	R-13 + R-6.5ci	R-13 + R-6.5ci	R-13 + R-6.5ci	R-13 + R-6.5ci	R-13 + R-6.5ci	R-13 + R-6.5ci	R-13 + R-6.5ci
d R-13 + R-3.8ci	or R-20	R-13 + R-3.8ci	or R-20						

| **Walls, below grade** | | | | | | |
| l'' NR | NR | NR | NR | NR | NR | R-7.5ci | R-7.5ci | R-7.5ci | R-7.5ci |

Floors									
NR	NR	R-6.3ci	R-8.3ci	R-10ci	R-10ci	R-10ci	R-10.4ci	R-10ci	R-10ci
NR	NR	R-30							

| **Slab-on-grade floors** | | | | | |
| NR | NR | NR | R-12.5ci |
• Architectural precast concrete cladding systems can satisfy the thermal requirements for IECC Zone 1-Zone 8.
• Suitable in locations—Miami to the North Slope Borough in Alaska.
Le Griffix, Montreal, Canada

- Key Design Objectives
 - High R-Value—the IECC has designated Montreal as a Zone 7.
 - Easy to assemble
 - Lightweight Precast Concrete Cladding
 - R-Value: 21
 - Lightweight: 30 lbs. per square foot
Johns Hopkins Campus
Nelson-Harvey Building East
Elevation (built circa 1970s)

- Key Design Objectives
 - Increase thermal performance
 - Provide an air and water barrier
 - Maintain cohesive look with rest of campus
 - Limit cladding system weight (5% dead load threshold for steel structural members, 10% building lateral.)
 - Meet aggressive design and construction schedule
 - Comply with current Baltimore City Building Code and ASHRAE standards
 - Achieve Baltimore City Green Building Systems 2 Green Star certification (LEED Silver equivalent)
The project required a weathertight exterior that had sufficient insulation. It needed to be a lightweight system that matched the Johns Hopkins signature brick aesthetic on campus.

Dan McKelvey
Associate Principal and Envelope Expert, Ayers Saint Gros
Project Materials — Wall Systems

- **Precast panel** — thin-brick mechanically bonded to lightweight precast concrete panel. System thickness of 2-1/2" brick/concrete on 6" CFMF = 8 1/2" overall thickness.

- **Aluminum curtain wall** — thermally broken curtain wall with fluoropolymer coating, insulating glazing, low-iron glass with ceramic frit and low-E coating.

- **Metal panel system** — aluminum panel with foamed-in-place polyiso core on CFMF
Completed
Nelson Harvey
Building
Entrance

Increased the insulation value of the building walls by 227%.
Thank You!
Register at The Continuing Architect to receive AIA credits: